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ABSTRACT 
Prevailing weather conditions significantly influence flight cancellations by airlines, airports and the Federal 

Aviation Administration (FAA). As a result, Dallas Fort Worth International Airport’s (DFW) Operations (OPS) 

Division is interested in estimating the anticipated departing flight cancellations to efficiently, and safely mitigate 

the negative effects caused. Accurately estimating the anticipated number of departing flight cancellations well in 

advance can assist airport operators to plan efficiently, and safely execute flight operations with minimal impact 

on passenger movement, airport capacity and throughput; consequently minimizing or completely reducing the 

chances of irregular operations (IROPS).This study focuses on weather related departure flight cancellations. 

Operations and weather data associated with at least one departure cancellation from 2010 to 2015 are used for 

mathematical modelling, analysis and validation. The Empirical Bayes (EB) model is used to evaluate the various 

weather factors that significantly affect flight departure operations.  Using Pearson matrix correlation, five weather 

factors, each with 1047 observations, (6282 entities) are determined and used in the model. The use of EB model 

accounts for the regression-to-mean (RTM) phenomena not accounted for by the negative binomial (NB) 

distributions used in the evaluation process. Both qualitative and quantitative statistical validation approaches are 

used to justify the results found. Actual departure cancellation DFW data from 2016 is used against the estimated 

results for validation. Results indicate that the number of weather related departure flight cancellations increases 

when the dew point temperature, the visibility distance and the cloud ceiling height decrease. Results, however, 

indicate that the number of weather related departure flight cancellations increases with increasing precipitation 

and cloud cover index. With a strong and positive correlation of R2 = 0.9869 and the means of both the estimated 

and actual cancellations being statistically different, this study renders the variable selection process and 

mathematical approach appropriate and acceptable. 

 

INTRODUCTION  
One factor that greatly affects flight delays, but is not entirely understood is flight cancellations (Seelhorst, 2014).   

Cancellations – especially those related to weather conditions cannot be prevented or be avoided. However, if a 

satisfying prediction solution to the related impact(s) were available, it would significantly assist the various 

stakeholders within the aviation industry – in this case, the airports to estimate, plan and safely manage the 

resultant effects on flight operations and airfield operations such as runway inspections and repairs. For the 

purpose of this study, cancellations refer to the departing/outbound cancelled flights. In addition, accurately 

predicting the expected number of cancellations can assist the FAA run inter-airline compression to fill in the 

open slots created (Xiong, et al., 2013).  

 

The scheduling of flights is based on an assumption that there will be no disruptions, and that the flights will 

depart and arrive on time (Lan, et at., 2006). However, due to flight delays or aircraft shortages caused by factors 

such as adverse weather conditions at given airports, airline carrier decisions (safety, mechanical or marketing), 

National Air System (NAS) and security reasons flight cancellations are usually adopted to minimize the potential 

economic losses (Mao, et al., 2015) and schedule disruptions (Gershkof, 2016). Mechanical problems and delays 

in the schedule of incoming flights may also contribute to flight cancellations (Jarrah et al., 1993).  

 

As a result, passenger itineraries, airlines and the FAA schedules and airport operations are significantly interfered 

with. This can have a dominos effect since a flight that is cancelled at one airport might be the one supposed to 

provide an aircraft for a departure from the destination airport. On average, masFlight estimates that it costs an 
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airline $5,770 for every cancelled flight segment (Ausick, 2014; Schoen, 2015). Flight delays and cancellations 

also affect passenger movements and costs. In 2015, 380,000 passengers had their flights cancelled resulting in a 

total cost of $180 million (Jones, 2015); that is $474 per passenger per cancellation.  

 

To be able to effectively predict cancellations, the factors leading to cancellations have to be identified and 

understood. At DFW, 62% of all cancellations are due to adverse weather, which usually leads to IROPS. IROPS 

negatively affects the airport’s capacity, throughput, safety, and scheduled runway inspections. In addition, 

cancellations in their own right are a major source of delay (Seelhorst, 2014). Seelhorst further acknowledges that 

there exists little work on the effect of flight cancellations hence the motivation of this study.  

 

Focusing at DFW, this study determines and investigates the weather factors that significantly contribute towards 

cancellations using Pearson’s correlation matrices, and then applies NB and EB models to historical data to 

calculate the number of expected cancellations given the pre-determined weather factors. This study then uses 

both qualitative and quantitative statistical methods to validate the results found. Upon knowing the anticipated 

or rather the estimated number of cancellations, DFW plans to use this information to optimally plan, manage and 

safely execute flight and airfield operations by minimizing or totally eliminating IROPS.  

 

Although a single value is found from the mathematical process employed, this study understands that when the 

forecasted weather values are given, they are presented as a range of the minimum to the maximum value. For 

example, if it is temperature, it is expressed in degrees Fahrenheit or Celsius as a minimum of say 60 to a maximum 

of say 70 for a given day. As a result, the expected number of cancellations will naturally vary from a minimum 

to a maximum value. The second part of this study plans to address this task by optimizing of the developed 

model. This is important for airport operations planners because they will be able to perform sensitivity analysis 

and as a result optimize the available resources without negatively affecting operations and safety. 

 

LİTERATURE SEARCH 
Although flight cancellations is a common act that significantly impacts both airline operators and their customers, 

not much has been published compared to related topics such as flight delays and flight diversions. The minimal 

publication could not be due to lack of research, this is because airlines have developed models they use to 

determine which and how many flights to cancel given the prevailing or forecasted conditions. However, due to 

either or both policy and marketing issues, the approach(s) taken is not public. Therefore, the factors and methods 

for flight cancellation are well understood and largely depend on airlines. However, DFW’s OPS division realizes 

that the airport’s capacity, operational efficiency and safety are significantly impacted and therefore the decision 

making of flight cancellations should be conducted in a more global way (Mao, et al., 2015). For example, the 

arrival capacity at San Francisco International Airport (SFO) varies between 30 and 60 lights per hour depending 

on the weather conditions (Xiong, Jing, and Hansen, 2013), that is a reduction of up to 50 percent. As a result – 

from the airport`s point of view, there is a need to estimate the expected flight cancellations prior to the occurrence 

to mitigate these impacts. 

 

To estimate the relative forecasted number of cancelled flights, direct mathematical modelling is required (Sridhar, 

et al., 2009). The use of both binomial regression and Poisson regression are usually recommended (Zou, 2004), 

since the data used are count data (Niaparast & Schwabe, 2013). These two predictive methodologies have been 

well researched, applied and are the most common (Elvik, 2008). Specifically, both the Poisson and NB models 

fit well with count data that are discrete, non-negative, and sporadic (Maina, et al., 2016). Naturally, the Poisson 

model is preferred (Poch and Mannering, 1996). Contrary to the findings of Zhao, et al., (2009), a limitation of 

the Poisson model is that it assumes that the variance is approximately or equal to the mean. This is not usually 

the case with count non-negative data, the variance tends to be significantly larger than the mean. When the 

variance is larger than the mean, the data is said to be over-dispersed. To overcome the over-dispersion problem, 

researchers have proposed either the NB framework or the two-state Markov switching models (Zou, et al., 2013). 

 

While analyzing two or more predictors or dependent variables, both the Poisson and NB have a limitation. They 

do not account for RTM phenomena usually exhibited by over-dispersed data. RTM is caused by both intra-

individual variance and measurement error (Shephard, 2003). The RTM phenomena and its influence on statistical 
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studies is well researched and documented as demonstrated by  Biggeri, et al. (2013), Harewood  ( 2015) and 

Cockrell et al. (2016). The general ways of accounting for RTM include the use of EB models (Maina, et al., 

2015) or fully Bayesian (FB) methods (Cao, et al., 2015). In addition, depending on the nature and sample size of 

the data, both Zero-inflated and OLS (ordinary least squares) regression models are appropriate. Zero-inflated 

models attempt to account for excess zeros with the assumption that two zeros (true zeros and excess zeros) exist 

in the data. Hence, estimate two equations concurrently, one for the count model and one or the excess zeros. OLS 

models are appropriate for log-transformed count outcome variables. However, the OLS model has a major 

limitation, there is data lost due to unidentified values generated by taking the log of zero and as a result, the 

findings are biased.  

 

As recommended in engineering processes, and perhaps the most crucial step in model development and analysis, 

is model validation (Catalina, et al., 2008). Model validation is the empirical technique of assessing the credibility 

of a mathematical model. The hypothetical expectation of model validation is that the observed data should 

generally match the results obtained from the developed model. Model validation is a measure of ensuring that 

the data used fits well into the given model, hence accurately representing the studied population. One of the 

techniques in performing model validation involves the use of a dataset that is independent of that used in the 

model development. The separate data can be either a percentage of the original sample, or an additional set of 

data from either the same location or a separate but similar location or from a computer program via Monte Carlo 

methods (Washington & Wolf, 1997: Sargent, 2004: TRB online (Last accessed in May, 2017)). Another reason 

why it is important to validate, is the relationships or trends portrayed in a given sample may not be usable over 

a period or at different locations is that the chosen sample might not accurately represent the given population.  

 

MATHEMATICAL MODELING 
This study uses a predictive approach to evaluate and obtain results.  Predictive modeling is a mathematical 

technique wherein the conventional goal is to find the relationship between an objective, a response variable and 

a set of given predictor variables,  with the intention of estimating the future values of the predictors and 

substituting them into the mathematical relationship to predict the future target variable values.  

 

Here, both the actual and the NB predicted flight cancellations are used to determine the expected future flight 

cancellations given the forecasted weather conditions. This sets up a before-and-after condition. Generally, two 

methods are appropriate under this condition, one simpler and one rather more complex. The simpler of the two 

is the comparison group method and the EB method the complex one – but the more robust of the two (Gross, et 

al., 2010). This study adopts the EB approach to increase the precision of flight cancellation evaluation by 

estimating a weighted combination of the actual and predicted cancellations as follows:  

 

 𝑬𝒇𝒄 = (𝒘 ∗ 𝒑) + [(𝟏 − 𝒘) ∗ 𝑨] (Equation I) 

 

 Where: 

  Efc =  number of expected flight cancellations per day 

w  = weight factor determined as follows:   

 

 

 𝒘 =  𝟏
[𝟏 + (𝒑 ∗ 𝒌)]⁄  

(Equation II) 

 

 

k  =  NB dispersion parameter 

A  = number of actual flight cancelations determined using extrapolation of historical  

   data under prevailing precipitation conditions 

p  = predicted number of flight cancellations per day  

 

As the over-dispersion parameter nears zero, that is less variation, the distribution also nears a Poisson distribution 

(Tegge et al. 2010).  The linear model for the Ith cancellation with q parameters Xi1, Xi2, Xi3 ...  Xiq, and regression 

coefficients β0, β1 … βq are  takes on the following form: 
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𝐥𝐨𝐠(𝝁) = 𝜷𝟎 + 𝜷𝟏𝑿𝒊𝟏 + 𝜷𝟐𝑿𝒊𝟐 + ⋯ + 𝜷𝒒𝑿𝒊𝒒 (Equation III) 

 

 

Equation III is determined using the NB distributions.  Like the Poisson distribution model, the NB model 

describes the occurrence of a random and rare event.  The main difference between these two log-linear models 

is that unlike the Poisson distribution where the assumption is that the variance is equal or approximately equal to 

the mean, the NB distribution compensates for situations where the variance (𝜇 + 𝜇2 𝑘⁄ ) is larger than the mean, 

a phenomenon referred to as over-dispersion.  The NB model utilizes the following distribution function: 

 

𝑷(𝒚𝒊) = (
𝚪 (𝒚𝒊 +

𝟏
𝒌

)

𝒚𝒊! 𝚪 (
𝟏
𝒌)

⁄ ) ∗ (
𝒌𝝁𝒊

𝟏 + 𝒌𝝁𝒊
⁄ )

𝒚𝒊

∗ (𝟏
𝟏 + 𝒌𝝁𝒊

⁄ )
𝟏

𝒌⁄

 

(Equation IV) 

 

 

Where: 

 Γ = is the gamma function 

  μ = is the negative binomial distribution mean 

  𝒌 = is the dispersion parameter 

 

 

DATA ANALYSİS 
Data for 1,047 days of observations with at least one weather related cancellation from 2010 to 2015 at DFW 

airport is considered for analysis. Data recorded from 2016 are used to validate the mathematical model and the 

results of the analysis. The response/dependent variable is the number of cancelled departing flights due to 

prevailing weather conditions and the predictor/independent variables are temperature means (0F), dew point (0F), 

humidity (%), sea level pressure (in), visibility (mi.), wind speed (mph), precipitation (in), cloud cover, wind 

direction (degrees) and cloud ceiling height (ft.). Data for the cancelled flights are obtained from the BTS database. 

Temperature, dew point, humidity, sea level pressure, visibility, wind speed, precipitation and cloud cover data 

are obtained from the Underground Weather database, while the cloud ceiling height data are obtained from the 

Iowa Environmental Mesonet (IEM) database. Table 1 presents the descriptive statistics for each of these 

variables. Each variable has 1,047 actual corresponding observations and their distributions seem significantly 

reasonable. Except for sea level pressure and visibility that show some under-dispersion tendencies, the other 

predictors are over-dispersed, meaning that their variances are higher than their corresponding means. This 

suggests that the NB model is more appropriate.  

 

Table 1: Descriptive Statistics 

  N Min. Max. Mean 

Std. 

Dev. Var. 

Cancelled Flights 1047 1.0 686.0 21.4 59.8 3575.3 

Temperature (ͦF) 1047 17.0 96.0 64.7 18.1 329.3 

Dew Point (ͦF) 1047 3.0 74.0 50.2 17.0 289.3 

Humidity (%) 1047 29.0 97.0 63.9 13.6 185.1 

Sea Level Pressure (in) 1047 29.5 30.7 30.0 0.2 0.0 

Visibility (mi.) 1047 1.0 10.0 9.1 1.6 2.6 

Wind Speed (mph) 1047 0.9 125.8 11.3 6.2 38.9 

Precipitation (in) 1047 0.0 5.2 0.2 0.5 0.2 

Cloud Cover  1047 0.0 8.0 4.9 2.5 6.1 

Wind Direction (degrees) 1047 1.0 360.0 175.9 98.6 9717.7 

Cloud Ceiling Height (ft.) 1047 0.0 30000.0 7048.2 6479.1 4.2E+7 
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Referring to Table 1 and like most predictive models, several predictors can be used for analysis.  However, these 

being count observational data and more than two predictors, there is a high chance of problems (multi-

collinearity) occurring (Dickey, 2012). Multi-collinearity is the inter-correlation between two or more independent 

predictors in a given regression model, this phenomenon introduces complications into the regression function. 

Independent predictors are more likely to be correlated when count observational data, such as those used in this 

study are collected. A model can be highly bias when two or more highly correlated predictors are included in the 

same model, or when a reliable predictor is correlated with a non-reliable predictor is omitted from the model. 

 

When predictors in a given model are interrelated, they are truly independent or orthogonal. When two predictors 

are orthogonal, and their correlation coefficient (R2 ) is zero, then their estimated coefficients will remain the same 

whether or not they are included in the same model. This study understands that usually predictors are orthogonal 

only because of controlled experiments. As a result, and as a measure to minimize the effects of multi-collinearity, 

this study uses the Pearson correlation matrix to determine which predictors are suitable to be in the same model 

as presented in Table 2. 

 

To select which predictor variables to include in the model, three constraints have to be met:  

a. the predictor must have a weak or no correlation with the response variable, in this case the number of 

cancelled flights;  

b. the predictor must have a weak or no correlation with the rest of the predictors; and  

c. the R2  between the predictors have to be statistically significant at 95% confidence level. 

The range of less or no correlation is between the coefficient of -2.99 and 2.99. A coefficient of more than 3 or 

less than -3, indicates strong correlations and therefore not accepted.  

 

Table 2: Pearson Correlation Matrix 

  CAN TEMP DEW HUM SEA VIS WSPD PRE CLD WDIR CEIL 

CAN 1 -0.3 -0.2 0.3 0.3 -0.2 0.0 0.2 0.2 0.0 -0.2 

   0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.6 0.0 

TEMP -0.3 1 0.9 -0.2 -0.6 0.3 0.0 0.0 -0.2 -0.1 0.0 

  0.0  0.0 0.0 0.0 0.0 0.7 1.0 0.0 0.0 0.2 

DEW -0.2 0.9 1 0.2 -0.6 0.1 0.0 0.1 0.1 -0.2 -0.2 

  0.0 0.0  0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 

HUM 0.3 -0.2 0.2 1 0.0 -0.6 0.0 0.4 0.7 -0.2 -0.6 

  0.0 0.0 0.0  0.4 0.0 0.6 0.0 0.0 0.0 0.0 

SEA 0.3 -0.6 -0.6 0.0 1 -0.1 -0.2 -0.1 0.0 0.0 0.1 

  0.0 0.0 0.0 0.4  0.1 0.0 0.0 1.0 0.2 0.0 

VIS -0.2 0.3 0.1 -0.6 -0.1 1 0.0 -0.2 -0.2 0.1 0.2 

  0.0 0.0 0.0 0.0 0.1  0.4 0.0 0.0 0.0 0.0 

WSPD 0.0 0.0 0.0 0.0 -0.2 0.0 1 0.0 0.1 0.1 -0.1 

  0.1 0.7 0.6 0.6 0.0 0.4  0.2 0.0 0.0 0.0 

PRE 0.2 0.0 0.1 0.4 -0.1 -0.2 0.0 1 0.2 0.0 -0.2 

  0.0 1.0 0.0 0.0 0.0 0.0 0.2  0.0 0.1 0.0 

CLD 0.2 -0.2 0.1 0.7 0.0 -0.2 0.1 0.2 1 -0.2 0.0 

  0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0  0.0 0.0 

WDIR 0.0 -0.1 -0.2 -0.2 0.0 0.1 0.1 0.0 -0.2 1 0.0 

  0.6 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0  0.2 

CEIL -0.2 0.0 -0.2 -0.6 0.1 0.2 -0.1 -0.2 0.0 0.0 1 

  0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2  

Model: CAN = Cancelled flights, TEMP = Temperature ( ͦF), DEW = Dew point ( ͦF), HUM = Humidity (%), 

SEA = Sea level pressure (in), VIS = Visibility (mi.), WSPD = Wind speed (mph), PRE = Precipitation (in), 

CLD = Cloud cover, WDIR = Wind direction (degrees), CEIL = Cloud ceiling height (ft.)  
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ANALYSİS OF PARAMETER ESTİMATES 
The NB regression model is used as part of analysis because it is suitable for count data variables, which usually 

show over-dispersion tendencies. The results of the NB analysis are presented Table 3. The table shows the NB 

regression coefficients for the predictors together with their corresponding standard errors, Wald chi-square 

values, and p-values at 95% confidence intervals for the coefficients. All the predictors are statistically 

significant.  In this case, when all the predictors are held at zero, the intercept coefficient is 4.35.  For the other 

predictors (dew point, visibility, precipitation, cloud cover and cloud ceiling height), these are the NB regression 

estimates for a one-unit increase in weather related cancellations, given the other variables are held constant in 

the model. If the dew point, visibility, precipitation, cloud cover and the cloud height were to each increase by 

one unit, the difference in the logarithms of the expected cancellations would be expected to decrease by -0.03, -

0.13, 1.21, 0.16 and -0.02 respectfully, while holding the other variables in the model constant. 

 

This is reasonable because decreased dew point, visibility and cloud ceiling height together with increased 

precipitation, and cloud cover is most likely expected to lead to increased flight launch conflicts, hence increased 

chances of cancellations. 

 

Table 3: Parameter Estimates 

      

95% Wald 

Conf. Int.  Hypothesis Test 

Parameter B 

Std. 

Error Lower Upper 

Wald 

Chi² df Sig. 

(Intercept) 4.35 0.33 3.71 5.00 176.46 1 0.000 

Dew Point (ͦF) -0.03 0.00 -0.03 -0.03 158.14 1 0.000 

Visibility (mi.) -0.13 0.03 -0.19 -0.07 15.71 1 0.000 

Precipitation (in) 1.21 0.14 0.94 1.48 74.90 1 0.000 

Cloud Cover  0.16 0.02 0.12 0.20 55.48 1 0.000 

Cloud Ceiling Height (ft.) -0.00 0.00 -0.00 -0.00 8.92 1 0.003 

NEGBIN Dispersion (k) 1.64 0.07 1.51 1.77       

 

The next step in this analysis involves using the EB model to determine the expected cancellations. This step 

corrects for the RTM phenomenon, which is the tendency for the occurrence of a number of cancellations of given 

days to fluctuate up and down, and to converge to a long-term average as demonstrated in Figure 1. The figure 

shows the distributions of the actual number of cancellations recorded, the predicted number of cancellations 

found using the NB distributions, and the expected number of cancellations as estimated by the EB model. As 

shown, unlike the NB found predicted cancellations, the actual and expected cancellations follow a similar 

distribution. This is because the EB model estimates the number of cancellations by applying a weight factor to  

adjust both the actual and predicted  number of cancellations to account for both over-dispersion and RTM. 
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Figure 1: Relationships between actual, predicted and expected cancellations 

 

5.1. Goodness-of-fit 

Having established that the data exhibits over-dispersion and applying the Pearson correlation matrix criterion, a 

NB distribution model with cancelled flights as the response variable and dew point, visibility, precipitation, cloud 

cover and cloud ceiling height as the predictors is derived and applied.  The link function of the NB is a logarithm, 

and all the 1,047 cases for each predictor are used in the analysis. To determine whether the data fit well in the 

model, a goodness-of-fit test is performed to compare the observed values to the predicted/fitted values as 

presented in Table 4. The criterion used to test is deviance, Pearson chi-square and the log likelihood. The values, 

degrees of freedom (df) and the ratios of value to df are presented. The model fits well since the ratios of the value 

to the df for both criteria are less than three.  Therefore, the NB parameter estimates presented in Table 3 are 

acceptable. 

 

Table 4: Goodness of Fitb 

Criterion Value df 

Value / 

df 

Deviance 1575.1 1412 1.116 

Pearson Chi-Square 3055.3 1412 2.164 

Log Likelihooda -4935.9     

 

1. a. The full log likelihood function is displayed and used in computing information criteria 

2. b. Information criteria are in small-is-better form. 
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MODEL VALİDATİON 
Once the mathematical model is developed and evaluated, the final step involves validation of the model. Here, 

validation is conducted by performing both qualitative and quantitative analysis using the 2016 expected or rather 

calculated weather related cancellations to the actual 2016 cancellations reported by BTS. A total of 185 

observations are used for validation.  

 

6.1. Qualitative Validation 

As shown in figure 2, a simple linear regression plot is used for the qualitative analysis. The horizontal and vertical 

axes show the actual cancellations and expected cancellations, respectively. Results show a tight clustering of 

both the actual and expected number of cancellations along the diagonal line. This is an indication that both data 

sets agree. . In addition, an R2 of 0.987 indicates a very strong and positive correlation between the expected and 

actual cancellations. 

 

 
Figure 2: Correlation between actual and estimated flight cancellations model validation 

 

6.2. Quantitative Validation 

The paired t-test is used for the quantitative analysis. A paired t-test also referred to as a dependent sample t-test 

is usually used when the observations are not independent of one another. In this case, both the actual and expected 

cancellations are influenced by common weather factors. The paired t-test accounts for this.  For each cancellation, 

the study is looking at the differences in the values of the two variables and testing if the mean of these differences 

is equal to zero.  

 

Table 5 below, shows the list of variables (Actual and Expected Cancellations), the respective means of the 

variables (5.865 and 5.065), the 185 valid (i.e., non-missing) observations used in the t-test, the standard deviations 

(12.412 and 10.664) of the variables and the estimated standard deviation of the sample mean.  The standard 

deviation of the sample mean provides a measure of the variability of the sample mean. 
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Table 5: Paired Samples Statistics 

    Mean N s 

SE 

Mean 

Pair 1 Actual Cancellations 5.865 185 12.412 0.913 

  Expected Cancellations 5.065 185 10.664 0.784 

 

As Table 6 shows, the paired t-test forms a single random sample of the paired difference. The mean of these 

values between both cancellations is compared to 0 in the test. 0.8 is the mean within-cancellation difference 

between the two variables. 1.93 is the standard deviation of the mean paired difference. 0.142 is the estimated 

standard deviation of the sample mean.  0.52 to 1.08 is the lower and upper bound of the confidence interval (95%) 

for the mean difference. 5.637 is the t-statistic.  It is the ratio of the mean of the difference to the standard error of 

the difference: (.8/1.143). 184 is the degrees of freedom for the paired observations, it is the number of 

observations minus 1. This is because the test is carried out on one sample of the paired differences. 0.00 is the 

two-tailed p-value computed using the t distribution.  It is the probability of observing a greater absolute value of 

t under the null hypothesis.  If the p-value is less than the pre-specified alpha level (0.05 for this study), it is then 

concluded that the mean difference between the two variables is statistically significantly different from zero and 

vice versa.  

 

As presented in Table 6, the t-statistic is 5.637 with 184 df.  The resultant two-tailed p-value is 0.000, which is 

less than 0.05.  This study then concludes that the mean difference of the actual and expected flight cancellations 

is significantly different from zero and therefore acceptable. 

 

Table 6: Paired Samples Test 

    Paired Differences 

t df 

Sig. 

2tail 

  

  Mean s 

SE 

Mean 

95% CI of Diff. 

Lower Upper 

Pair 1 Actual-Expected 

Cancellations 

0.800 1.930 0.142 0.520 1.080 5.637 184 0.000 

 

CONCLUSİON 
The main objective of this study was to develop and validate a model to estimate the expected number of 

cancellations originating from the DFW airport due to forecasted weather conditions. NB distributions were used 

to determine the predicted cancellations, which together with the actual cancellations were empirically weighted 

determine the expected cancellations by employing the EB model.  The study site for this research is DFW 

International Airport, where 1,047 observations from 2011 to 2015 for each of the six variables are used for 

evaluation. The mathematical model was then validated using 185 observations of flight cancellations obtained in 

2016. Both qualitative and quantitative statistical methods were used for validation. Both methods indicate that 

the approach and results used in this study are reasonable and acceptable. Although reliable, this study 

recommends that further research to be conducted by including additional data in the validation process. It is also 

recommended that data from other sites/airports be used in the evaluation process. The findings of this research 

can help both the airport and the airlines operators to optimize flight operations and resources. As a result, airlines 

will save funds and the airport will conduct flight operations effectively and efficiently by optimizing capacity. 

In addition, through these exercises, the airport can improve safety and minimize potential incursions hence 

minimizing or completely eradicating IROPS. The second part of this study will look at optimizing the model 

determined to allow for sensitivity analysis and efficient planning for both flight and airfield operations.  
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